
Software Engineering — Software Process
Activities (Part 3)

Requirements Engineering
Software speci�cation or requirements engineering is the process of

understanding and de�ning what services are required and identifying

the constraints on these services.

Requirements engineering processes ensures your software will meet

the user expectations, and ending up with a high quality software.

It’s a critical stage of the software process as errors at this stage will

re�ect later on the next stages, which de�nitely will cause you a higher

costs.

At the end of this stage, a requirements document that speci�es the

requirements will be produced and validated with the stockholders.

There are four main activities (or sub-activities) of requirements

engineering:

Feasibility study: An estimate is made of whether the identi�ed

can be achieved using the current software and hardware

technologies, under the current budget, etc. The feasibility study

should be cheap and quick; it should inform the decision of

whether or not to go ahead with the project.

1.

The requirements engineering process.



Requirements elicitation and analysis: This is the process of

deriving the system requirements through observation of existing

systems, discussions with stakeholders, etc. This may involve the

development of one or more system models and prototypes that

can help us understanding the system to be speci�ed.

Requirements speci�cation: It’s the activity of writing down the

information gathered during the elicitation and analysis activity

into a document that de�nes a set of requirements. Two types of

requirements may be included in this document; user and system

requirements.

Requirements validation: It’s the process of checking the

requirements for realism, consistency and completeness. During

this process, our goal is to discover errors in the requirements

document. When errors are found, it must be modi�ed to correct

these problems.

Of course, the activities in the requirements process are not simply

executed in a strict sequence, but, they are interleaved. For example,

analysis activity continues during the speci�cation as new

requirements come to light.

In agile methods, requirements are developed incrementally according to

user priorities and the elicitation of requirements comes from users who

are part of the development team.

Software Design And Implementation
The implementation phase is the process of converting a system

speci�cation into an executable system. If an incremental approach is

used, it may also involve re�nement of the software speci�cation.

A software design is a description of the structure of the software to be

implemented, data models, interfaces between system components,

and maybe the algorithms used.

The software designers develop the software design iteratively; they

add formality and detail and correct the design as they develop their

design.

Here’s an abstract model of the design process showing the inputs,

activities, and the documents to be produced as output.

2.

3.

4.

https://medium.com/omarelgabrys-blog/requirements-engineering-introduction-part-1-6d49001526d3#a3d6


The diagram suggests that the stages of the design process are

sequential. In fact, they are interleaved. A feedback from one stage to

another and rework can’t be avoided in any design process.

These activities can vary depending on the type of the system needs to

be developed. We’ve showed four main activities that may be part of

the design process for information systems, and they are:

Architectural design: It de�nes the overall structure of the

system, the main components, their relationships.

Interface design: It de�nes the interfaces between these

components. The interface speci�cation must be clear. Therefore,

a component can be used without having to know it’s

implemented. Once the interface speci�cation are agreed, the

components can be designed and developed concurrently.

Component design: Take each component and design how it will

operate, with the speci�c design left to the programmer, or a list of

changes to be made to a reusable component.

Database design: The system data structures are designed and

their representation in a database is de�ned. This depends on

whether an existing database is to be reused or a new database to

be created.

These activities lead to a set of design outputs. The detail and

representation vary based on the system being developed.

1.

2.

3.

4.

The software design process



For example, in critical systems, detailed design documents giving a

precise and accurate description of the system must be produced.

These outputs may be graphical models of the system, and in many

cases, automatically generating code from these models.

Software Veri�cation And Validation
Software validation or, more generally, veri�cation and validation

(V&V) is intended to show that a system both conforms to its

speci�cation and that it meets the expectations of the customer.

Validation may also involve checking processes, such as inspections or

reviews at each stage of the software process, from de�ning the

requirements till the software development.

Testing, where the system is executed using simulated test data, is an

important validation technique.

Testing has three main stages:

Development (or component) testing: The components making

up the system are tested by the people developing the system.

Each component is tested independently, without other system

components.

System testing: System components are integrated to create a

complete system. This process is concerned with �nding errors

that result from interactions between components. It is also

concerned with showing that the system meets its functional and

non-functional requirements.

1.

2.

The stages of testing



Acceptance testing: This is the �nal stage in the testing process

before the system is accepted for operational use. The system is

tested with data supplied by the system customer rather than

using simulated test data. It may reveal errors in the system

requirements de�nition.

Components may be simple entities such as functions or object classes, or

may be coherent groupings of these entities. Test automation tools, such as

JUnit are commonly used to run component tests.

Normally, component development and testing process are interleaved.

Programmers tend o make up their own test data and incrementally

test the code as it’s developed.

In some other cases, tests are developed along with the requirements

before the development starts. This helps the testers and developers to

understand the requirements and reveals requirements problems.

When a plan-driven software process is used, testing is driven by a set

of test plans, which created from the system speci�cation and design.

How the test plans are the link between each phase of the development

life cycle and its associated phase of testing can be demonstrated by a

software process model called “V-model”.

Software Maintenance
Requirements are always changing, even after the system has been put

into its operating environment. The �exibility of software systems is

one of the main reasons why software is being used in large, complex

systems.

3.

Testing phases in a plan-driven software process

https://medium.com/omarelgabrys-blog/software-engineering-software-process-and-software-process-models-part-2-4a9d06213fdc#2a91


Historically, there has always been a split between the process of

software development and the process of software evolution (software

maintenance).

However, this distinction is increasingly irrelevant, and it makes much

more sense to see development and maintenance as a continuum.

Rather than two separate processes, it is more realistic to think of

software engineering as an evolutionary process where software is

continually changed over its lifetime in response to changing

requirements and customer needs.


